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SYNOPSIS

A theoretical method is developed for determining the distribution of
stresses and deflections in prestressed concrete pavements beyond condi-
tions to which the elastic theory is applicable, The method is limited to a
load applied at an interior position of a slab supported by a dense liquid foun-
dation and prestressed equally in the longitudinal and transverse directions.
By use of this method, the magnitude of load causing top surface cracking
and the location of this cracking can be predicted.

INTRODUCTION

In studying the performance of prestressed concrete pavements, it is nec-
essary to investigate stresses and deflections beyond conditions to which the
elastic theory is applicable, Theoretical studies beyond the elastic range have
been reported for the case of interior loading by Levi% and by Cot and Beck-
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6. Compute the moment distribution from the following:

and
m, = (mto + APl m >+ AP2 Mg e

7. Continue the above procedure until the negative radial moment becomes
equal to the cracking moment (see Fig. 1).

In step 2, P¢ may be determined so that the average tangential moment
within a circular areabecomes equal to the cracking moment. A similar pro-
cedure may then be applied to determine each load increment AP (steps 3,
4, and so forth). This alternate method will yield a closer approximation of
the load causing the top surface cracking. The alternate method was used in
the following sample calculation.

SAMPLE CALCULATION

A sample calculation is given for the particular circular loading areahav-
ing a radius equal to 0.2L.

The radial and tangential moment distributions are shown in Fig. 6 for
each loading step, including that which caused top surface cracking. The de-
flection distributions are shown in Fig. 7. In Figs. 6 and 7, the applied load,
P, the load causing the initial bottom surface cracking, P, and the load caus-
ing top surface cracking, Pf, are all expressed in terms of the cracking mo-
ment me. The distance from the load center is expressed in units of L in
which

In this calculation, the radius of the bottom cracked zone (b) was chosen in
steps of 0.1L from 0.2L to 1.2L. From the results, the top cracking load,
P;, equals 3.34 P,. The radius of the top crack, d, equals 0.8L, as deter-
mined graphically from Fig. 6.

CONCLUSIONS

This solution for the response of a prestressed concrete pavement to a
load applied at an interior position provides numerical values of deflections
and radial and tangential moments throughout the pavement for each load in-
crement. Within the limitations of the assumptions defined in the text, the
results indicate that prestressed concrete pavements are able to support
loads greatly in excess of those that cause radial bottom surface cracks.
This method is not proposed as a design procedure, but rather as a contribu-
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tion toward a better understanding of the performance of prestressed pave-
ments.

ACKNOWLEDGMENTS

The work was done at the Portland Cement Association Research and De-
velopment Laboratories where the writer was formerly an associate engi-
neer in the Paving Development Section. The investigation was suggested by
the late Mr. E. J. Felt, then Manager of that Section, and his guidance in the
course of the work was most helpful. Thanks are also due G. G. Balmer and
A. P. Christensen for their valuable suggestions.

APPENDIX I.--SOLUTION OF THE ELASTIC SLAB DUE TO
CIRCULAR PLATE LOADING

Inside the Loading Avea.—The fundamental differential equation is

2 2
D d2 + 1 d _d3é+ 1 dy>+l«:y p...(50)
dx X dx dx x dx

Eh’3

fetim

and is the flexural rigidity of the slab, x is the distance from the load center,
y represents the deflection of the slab, k is the modulus of subgrade reaction,

in which

and p denotes the applied load per unit area. Substitution of L4 = D and & =

k
iL into Eq. 50 yields
2 2
<d_2 L1 d_><d_yz+idi eyeR L (s2)
dé £ d&/\d¢ £ df k
The solution of Eq. 52 is given in terms of the Z-functions as
= b
v= A Z(8) + AYZ,(6) + AZ, (6)+ A2, ()+ 2 L (59)

The slope and the shear at the center of the loading area must be zero; there-
fore
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and
- p
y~A121(£)+A222 (£)+ T e (55)
Accordingly,
dy = 1 1
L= = A 20 () + A Zg (8) ..ol (56)
m_= %[Al%’zz(w LBz (64, zl(g)é-l“‘zz'(s)q. (57)
L £ £ .
and
-.D ' '
v= 03 A Z5(8) + A2zl(g)J ........ (58)

Outside the Loading Area.—The fundamental differential equation is ob-
tained by having p = 0 in Eq. 50; thus

2 2
D<d2 +i_.d_><d32’ +_1.d1>»ky=o )
dx x dx dx X dx

The solution of this differential equation is

v =B, zl(s)+ B, 22(§)+ B, 23(5)+ B, 24@) ..., (80)

Since the slab is of infinite extent, the deflection and slope approach zero as
x approaches infinity; therefore,

By =By=0 ... (61)
=By Zy (£) + By Z,(8) ..., (62)
dy . ' ’ A

LTIX =By Zg(8)+B,Z,(8) ... (63)

— D ‘ 1-—‘& t
n -?[Bg»-z(é)*' z4 ()

{ 1-py,
2B, iz (9 Lty (5)].. (64)
¢ 4373 £ 4 %

{

and

. D . ,
V-F{'B3Z4(£)+B4ZS(£)} ........ (85)

Boundary Conditions.— At the boundary inside and outside the loading area,
the deflections, slopes, moments, and shears must be the same; hence,

A Z (@) + Ay Zy (@) + %=B323(0)+B4Z4 (@) ... (66)
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Alzl’{a)+A222'(a)=B3Zé(a)+B424(a) L. (8T)

Al%-ZZ (@) +12E 71 ()

+ AZ%Z1 (a)+ 1'“Zé (@)

!
)

[¢4 1 [°4
- }33%- 2, o)+ 124 Zé(a)g +B4§ZB(Q)+ Lz @] (o)
and
-4y 7 (o:)+A221' (of)=-B324i(a)+B4Z§(a) ..... (69)
Eq. 88 can be replaced by
- A Zo(a) + A, zl(a)=-B3z4(a)+B4zs(a) ..... (70)

By solving Eqs, 66, 67, 69, and 70, simultaneously, the constants A1, As, B3,
and B4 are obtained. In order to solvethe simultaneous equation the following
relations between the Z-functions are used:

Z, (a) Zé (a) - Z, () 24‘ (o) - 24 {a) Z, (o)+ Z‘2(a)Z4(a‘)= g...(71)

and
7, (@) 2(a) +Zy(a) 24 (a) - 2] (a) 7, (@)- 2§ (@) 2 00) =2 .. (72)

Thus,
Z'(a) P
Al——M z‘i(a)im—f’f—-——-——g— (73)
2 k 2o kL
Zé(oz) P
A, =~ o IR (74)
2¢ kL
Zg () P
By =- R ERERREE (75)
2a kL
and
Zl’(a) P
B4=— TTH e (76)
2a kL

yz—P rrrrr [i~24(a’)zl(€)-Zé(a)zz(g)} oL (D
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]

a4y ﬂ.!i__?.z*(mzws)-z'(a)z*(gﬂ . (1)
dx 2KL3QL 4 1 3 2 ;

P t 1- 1 t 1'” M
m_ = ﬂ[-%m%- 2,0+ 12y (g)%-zB<a)§z1(g>+~€—z2<s>ﬂ. - (19)

r

- P ¥ 1'“’ 1 1 - 1"4{}' 3
mt~2—a}LZ4 (a) u22(€)+‘—5—21(£)§+23(a) uzl(£)+ ; Zz(s)ﬂr (80}
and

y = —P-?zi(a)zz*(g) -2 (a)Zi(ﬁ)} ...... (81)
ZLQL

QOutside the loading area (x z a):

P T
= izt ) 2o (EY -2 a) 2 (E)Y (82)
y 2kL2aL 2 3 1 4 }
& __ P [ pyze)-z @z (83)
dx 2kL3a 2 3 1 4 J

@)]-2,0+ B2y 0)]-7; (@)

1-p i
z () Hzr el . (84)
3T

m, - i{z () z,(6)+ 1; Ezy(5)+ 2, <a>§-,u z3(£)+1; = (z;)ﬂ. . (85)

v =

[zz'(a)z4(s>-zi(a)z3;<g>] ..... (86)

2Le

APPENDIX IL-~NOTATION

The following symbols have been adopted for use in this paper:

A = gimplifying function (see Eq. 43};

Al’ A2, A3, A 4 = constants of integration;

a = radius of circular area over which load is uniformly dis-
tributed;

B = gimplifying function (see Eq. 44);

8T 5
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constants of integration;

radii of circular areas defining the stepwise limits of bot-

tom surface radial cracks;

constants of integration;

flexural rigidity of the slab or k L4;
radius of the top surface crack;
elastic modulus of concrete;

Hankel function;

thickness of the slab;

Bessel function of the first kind;

modulus of subgrade reaction;

Eh3

12(1- %) x

radial bending moment due to applied load;

radius of relative stiffness or 4

radial bending moment due to subgrade reaction;
total radial bending moment;

cracking moment of the slab;

radial bending moment per unit length of arc;
elastic radial moment due to load Pc;

plastic radial moment at intermediate steps;
tangential bending moment per unit length of arc;

elastic tangential moment due to load Pc;

plastic tangential moment at intermediate steps;
load causing bottom surface cracking;

load causing top surface cracking;

increments of the tofal load;

load per unit area;

inerement of load per unit area;

variable distance from the apex, for integration;
shearing force per unit length of arc;

variable distance from center of loaded area;

deflection of the slab at any point;
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deflection of the glab at x = b;

Z functions (real and imaginary parts of Bessel and Han-
kel functions);

first derivative of Z-functions;
A

L
Ll

b

3

L

slope of the deflection line at x = b;

Poisson’s ratio of concrete; and
B :

L
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